From Link Homology to TQFTs

Paul Wedrich Universität Hamburg

Cluster of Excellence "Quantum Universe" CRC1624 "Higher structures, moduli spaces and integrability"

New Perspectives on Skein Modules, CIRM

CIRM, July 28th 2025

Overview

- Introduction
- 2 Link homology and TQFT background
- 3 Four types of TQFT from Categorification

Introduction

Challenge

- 1 The Witten-Reshetikhin–Turaev (WRT) invariants of 3-manifolds arise from ribbon categories of quantum group representations.
 - For example, as sums of colored Jones polynomials at a root of unity.
- Much of quantum group representation theory categorifies.
 - Khovanov taught us how to categorify the colored Jones polynomials.

Challenge (following Crane-Frenkel, Khovanov)

Use **categorification** to build invariants that are:

- algebraically computable, e.g. in terms of link homology
- useful for smooth 4-manifold topology

Approach

- Understand conceptual background of WRT invariants via a family of extended topological quantum field theories (TQFTs).
 - TQFTs are determined by algebro-categorical local data.
- Categorify the local data.
 - Categorification is non-deterministic, explore choices!
- Onstruct categorified TQFTs from categorified local data.
 - Results will depend on categorification choices.
 - Categorification may circumvent finiteness constraints.

Talk today: recent progress

- First approximation satisfies the wish list:
 - computable in terms of link homology
 - useful for smooth 4-manifold topology
- Second generation invariants show hints of WRT categorification.

Link homology and TQFT background

Link homology

$$\begin{cases} \text{links diagrams in } \mathbb{R}^2 \\ \text{movies of diagrams/m. moves} \end{cases} \xrightarrow{H} \mathcal{K}^b(\text{gr}^{\mathbb{Z}}\text{Vect})$$

$$\downarrow \cong \qquad \qquad \qquad \downarrow \chi_q \qquad \qquad$$

Link homology H via generators and relations (Khovanov 99):

- data: chain complex for each link diagram
- data: a chain map for every elementary movie
- property: satisfying movie moves

Theorem (Ehrig-Tubbenhauer-W. 2017)

General linear link homology yields such a functor, via Robert–Wagner combinatorial approach to \mathfrak{gl}_N Khovanov–Rozansky homology.

Link homology

property: satisfying movie moves

Theorem (Ehrig-Tubbenhauer-W. 2017)

General linear link homology yields such a functor, via Robert–Wagner combinatorial approach to \mathfrak{gl}_N Khovanov–Rozansky homology.

TQFT

A TQFT is an assignment:

 $spacetimes \rightarrow algebro-categorical structures$

compatible with gluing:

- for a fixed spatial dimension *n* and tangential structure
- ullet extension up: functorial under some (n+1)-dimensional bordisms
- extension down: higher algebraic structures for lower dimensional manifolds needed for gluing
- computation of manifold invariants via cut-and-paste techniques

Terminology

A TQFT is **local** if value on the point determines all values via gluing.

Today: all manifolds smooth, oriented.

Best case scenario for local (n+1)-dimensional TQFT

manifold	type of value	
dimension	on closed manifolds	
n+1	scalars	
n	vector spaces	
n-1	1-categories	
:	i :	
n – k	<i>k</i> -categories	
:	:	
0	<i>n</i> -categories	

Ignored aspects:

- Ambient symmetric monoidal higher category
- Values on manifolds with boundary
- Dualizability, incl. finiteness
- Pivotality (tangential structure requirements)

Example: Turaev–Viro type local (2+1)d TQFT

manifold	type of value	
dimension	on closed manifolds	
3	scalars	
2	vector spaces	
1	certain categories	
0	certain 2-categories	

Turaev–Viro (TV) invariants skein modules of 2d \mathcal{C} -diagrams skein categories of 2d \mathcal{C} -diagrams pt \mapsto spherical fusion category \mathcal{C}

No details here, but see e.g.:

- Turaev-Viro, Ocneanu 92-94: state sum 3-manifold invariant from triangulation and 6j-symbols
- Barrett-Westbury 96-99: from spherical fusion category
- Roberts 93, Walker: relation to skein theory
- Balsam-Kirillov 10: as 1-2-3 extended TQFT
- Douglas–Schommer-Pries–Snyder 13: local framed version via cobordism hypothesis

Example: Crane–Yetter type local (3+1)d TQFT

manifold	type of value	
dimension	on closed manifolds	
4	scalars	
3	vector spaces	
2	certain categories	
1	certain 2-categories	
0	certain 3-categories	

Crane–Yetter (CY) invariants skein modules of 3d \mathcal{C} -diagrams skein categories of 3d \mathcal{C} -diagrams

 $\mathsf{pt} \mapsto \mathsf{ribbon} \; \mathsf{fusion} \; \mathsf{category} \; \mathcal{C}$

No details here, but see e.g.:

- Crane—Yetter 93: state sum 4-manifold invariant from triangulation and 15j-symbols
- Crane–Kauffman–Yetter 94: from ribbon fusion category
- Roberts 93, Walker, . . . , Tham 21: relation to skein theory

Caveat

CY of 4-manifolds only depends on Euler characteristic and signature.

Example: Reshetikhin-Turaev type 1-2-3d TQFT

manifold	type of value	
dimension	on closed manifolds	
3	scalars	
2	vector spaces	
1	certain categories	

WRT invariants

 $S^1 \mapsto \mathsf{modular}$ fusion cat $\mathcal C$

Caveat

RT may not be local, but instead a boundary theory for CY. Walker, Freed-Telemann, Johnson-Freyd-Scheimbauer, Haïoun...

Example

- Surgery presentation of M^3 defines cobordism $W^4: M^3 \to \emptyset$.
- ② Evaluate map $CY(W^4)$ on vacuum skein $\emptyset \in CY(M^3)$.
- 3 Scalar renormalization removes dependence on W^4 , yields $RT(M^3)$

Forgetting the braiding yields relationship: $TV(M^3) = |RT(M^3)|^2$.

Takeaways

- Quantum group representation theory yields a family of TQFT triples
 - local 3d TV
 - local 4d CY
 - 1-2-3d RT
- 2 Top dimension in TV & CY need finiteness, roots of 1, semisimplicity. Lower dimensions more robust via skein theory
 - \implies local $(n + \varepsilon)$ -dimensional TQFT, maybe partially defined Walker
- Oategorified RT may need categorified CY and categorified TV.

Strategy

Categorification and skein theory should give access to:

- Categorified CY in dimensions ≤ 4 .
- Categorified TV in dimensions ≤ 3 .

Periodic table of $(n + \varepsilon)$ -dimensional TQFTs

Inspired by variations of the cobordism hypothesis Baez–Dolan, Lurie. By **local data**:

$\mathbb{E}_k \setminus n-k$	0	1	2	• • •
	sets	categories	2-categories	
\mathbb{E}_1	monoids	monoidal cats	monoidal 2-cats	• • •
\mathbb{E}_2	comm. monoids	braided cats	braided 2-cats	
\mathbb{E}_3		sym. mon. cats	sylleptic 2-cats	
\mathbb{E}_4			sym. mon. 2-cats	
:				٠

• Dimension n = (category level n - k) + (degree of monoidality k).

Periodic table of $(n + \varepsilon)$ -dimensional TQFTs

Inspired by variations of the cobordism hypothesis Baez–Dolan, Lurie. By shape of skeins:

$\mathbb{E}_k \setminus n-k$	0	1	2	• • •
_				• • •
\mathbb{E}_1	points in 1d	lines in 2d	surfaces in 3d	• • •
\mathbb{E}_2		lines in 3d	surfaces in 4d	• • •
\mathbb{E}_3			surfaces in 5d	• • •
\mathbb{E}_4				• • •
i i				

- Dimension n = (category level n k) + (degree of monoidality k).
- Skeins of codimension k in ambient n-manifolds.

Four types of TQFT from Categorification

TQFTs from Categorification

	linear	loc. linear
$\mathbb{E}_k \backslash n - k$	1-categories	2-categories
monoidal	TV	Asaeda–Frohman–Kaiser
braided	CY	

Asaeda-Frohman 07, Kaiser 09: skein modules of surfaces in 3d

Douglas-Reutter 18: skein modules of foams in 3d

- based on concept of fusion 2-categories
- extends to 4d by state sum
- maybe no oriented exotica detection due to semisimplicity

TQFTs from Categorification

	linear	loc. linear	loc. stable
$\mathbb{E}_k \backslash n - k$	1-categories	2-categories	$(\infty,2)$ -categories
monoidal	TV	Asaeda–Frohman–Kaiser	[HRW24]
braided	CY	[MWW19]	[LMGRSW24]

- Asaeda-Frohman 07, Kaiser 09: skein modules of surfaces in 3d
- Morrison-Walker-W. 19: skein modules of surfaces in 4d
 - based on link homology, e.g. \mathfrak{gl}_N Khovanov–Rozansky homology
- Stroppel—W. 24:
 - local data for derived skein modules of surfaces in 4d
 - based on Rouquier complexes from link homology
- 4 Hogancamp—Rose—W. 24:
 - prototype derived skein modules of surfaces in 3d
 - relation to Rozansky–Willis invariants, stable RT categorification

Asaeda–Frohman–Kaiser type $(3 + \varepsilon)$ d TQFT

	loc. linear	loc. stable
$\mathbb{E}_k \backslash n - k$	2-categories	$(\infty,2)$ -categories
monoidal	Asaeda–Frohman–Kaiser	
braided		

Asaeda–Frohman–Kaiser type $(3 + \varepsilon)$ d TQFT

Local data

Locally linear monoidal 2-category constructed from e.g.:

- ullet a commutative Frobenius algebra \equiv classical 1-2d TQFT, or
- a closed foam evaluation formula Blanchet 10, Robert-Wagner 17, Kronheimer-Mrowka+Khovanov-Robert 15-18

Example: Khovanov-Bar-Natan skein theory

Asaeda–Frohman–Kaiser type $(3 + \varepsilon)$ d TQFT

Local data

Locally linear monoidal 2-category constructed from e.g.:

- ullet a commutative Frobenius algebra \equiv classical 1-2d TQFT, or
- a closed foam evaluation formula Blanchet 10, Robert-Wagner 17, Kronheimer-Mrowka+Khovanov-Robert 15-18
- $M^3 \mapsto \text{skein module of decorated surfaces/foams in } M^3 \mod \text{relations}$
- ullet $\Sigma^2\mapsto$ linear category with morphism spaces from values on $\Sigma^2 imes I$
 - used for Khovanov homology of links in thickened surfaces Boerner 08
 - ullet categorifies Temperley–Lieb skein module of Σ^2 Queffelec–W. 18

	loc. linear	loc. stable
$\mathbb{E}_k \backslash n - k$	2-categories	$(\infty,2)$ -categories
monoidal		
braided	[MWW19]	

Local data (Morrison-Walker-W. 19)

Locally linear braided monoidal 2-category constructed from link homology that is functorial in B^3 , \mathbb{E}_3 -monoidal, and 3-spherical, e.g. \mathfrak{gl}_N homology.

Infinite family of extra sweeparound movie moves:

Local data (Morrison-Walker-W. 19)

Locally linear braided monoidal 2-category constructed from link homology that is functorial in B^3 , \mathbb{E}_3 -monoidal, and 3-spherical, e.g. \mathfrak{gl}_N homology.

• $W^4 \mapsto$ skein module of decorated surfaces in W^4 mod relations

Skein relations from Morrison-Walker-W. 19

Variation for Floer lasagna modules Chen 22.

Local data (Morrison-Walker-W. 19)

Locally linear braided monoidal 2-category constructed from link homology that is functorial in B^3 , \mathbb{E}_3 -monoidal, and 3-spherical, e.g. \mathfrak{gl}_N homology.

- $W^4 \mapsto$ skein module of decorated surfaces in W^4 mod relations
- $M^3 \mapsto$ linear category with morphism spaces from values on $M^3 \times I$
- link homology is skein module of B^4 with link as boundary condition

Theorems (Manolescu-Neithalath 20, Manolescu-Walker-W. 22)

Skein modules for \mathfrak{gl}_N homology can be reduced to link homology in S^3 along a handle decomposition of W^4 .

Theorem (Hogancamp-Rose-W. 22)

The Khovanov homology skein module for the surgery cobordism of a link is an explicit colimit of colored Khovanov homologies.

Rhymes with surgery description of RT. Computability ✓.

Theorem (Sullivan-Zhang 24)

The Khovanov skein module of $S^2 \times S^2$ vanishes.

Theorems (Morrison-Walker-W. 24)

- Deformed \mathfrak{gl}_N skein modules as $\bigoplus_i \mathfrak{gl}_{N_i}$ skein modules.
- Genus bounds (Rasmussen s-invariants) for smooth surfaces in W^4 .

E.g. Khovanov \mathfrak{gl}_2 skein modules deform to Lee $\mathfrak{gl}_1 \oplus \mathfrak{gl}_1$ skein modules.

Theorems (Ren-Willis 24)

- Vanishing results for certain Khovanov skein modules, e.g. high framing knot traces, inherited by embeddings.
- Diagrammatic non-vanishing results.
- Purely algebro-combinatorial detection of exotica!

Applications ✓. But these skein modules do not categorify RT!

Caveat

Manolescu-Walker-W. 22: Khovanov skein modules can be locally infinite dimensional \implies have no decategorification.

Example: Consider $B^3 \times S^1$ with link $\{4 \text{ points}\} \times S^1$.

- Skein module is HH_0 of linear category associated to $(B^3, \{4 \text{ points}\})$.
- Every rational 4-ended tangle gives an object.
- Their rotation surfaces are linearly independent skeins in degree 0.

What happened?

Chain complexes for 4-ended tangles fail to decategorify to their Euler characteristic under HH_0 . Have taken (link) homology too early.

Remedy

Work on level of chain complexes instead of link homology.

Example recovers Rozansky's Khovanov homology for links in $S^2 \times S^1$.

derived $(4 + \varepsilon)$ d TQFT via link complexes

	loc. linear	loc. stable
$\mathbb{E}_k \setminus n - k$	2-categories	$(\infty,2)$ -categories
monoidal		
braided		[LMGRSW24]

derived $(4 + \varepsilon)$ d TQFT via link complexes

Local data (wanted!)

Locally stable \mathbb{E}_2 -monoidal $(\infty, 2)$ -category constructed from link chain complexes, 4-dualizable in a suitable symmetric monoidal $(\infty, 5)$ -category and equipped with SO(4)-homotopy fixed point data (pivotality).

Theorem (Liu-Mazel-Gee-Reutter-Stroppel-W. 24)

Chain complexes of type A Soergel bimodules assemble into a locally stable \mathbb{E}_2 -monoidal $(\infty, 2)$ -category with braiding by Rouquier complexes.

Objects not dualizable. Only braids, no tangles. Triply-graded homology.

Theorem (Dyckerhoff–W. 25 inspired by Kapranov–Schechtman)

Braiding comes from factorizing family of perverse schobers on $\mathrm{Sym}^{\bullet}(\mathbb{C})$.

Challenges

- Build \mathfrak{gl}_N version, generated by 2-dualizable objects, pivotality.
- Globalize to derived skein modules, β -factorization homology.

derived $(3 + \varepsilon)d$ TQFT

	loc. linear	loc. stable
$\mathbb{E}_k \setminus n - k$	2-categories	$(\infty,2)$ -categories
monoidal		[HRW24]
braided		

derived $(3 + \varepsilon)d$ TQFT

Parallel bordered (sutured) HF package Lipshitz–Ozsvath–Thurston, Zarev, Douglas–Manolescu, Rouquier–Manion?

Want:

- $M^3 \mapsto$ chain complex (derived skein module)
- $\Sigma^2 \mapsto \mathsf{dg}$ category with morphism spaces from values on $\Sigma^2 \times I$

Local data

Locally linear monoidal 2-categories as in Asaeda-Frohman-Kaiser TQFT.

 \implies skein theory in B^3 (contractible) should be the same (discrete).

Idea

- Every M^3 arises from gluing B^3 s along parts of their boundaries.
- Model gluing as derived \otimes over dg category for gluing locus Σ^2 .

This is not as circular as it sounds! Same strategy for Σ^2 .

derived $(3 + \varepsilon)d$ TQFT

Theorems (Hogancamp-Rose-W. 24)

For every marked surface Σ^2 , there exists a canonically associated dg category that

- has homotopy category $AFK(\Sigma^2)$ and K_0 the TL skein module of Σ^2
- ullet can be computed from any choice of 2d 1-handlebody structure of Σ^2
- ullet tautologically carries a coherent action of Diff $^+(\Sigma^2)$
- graded hom complexes have locally finite-dimensional cohomology
 - instances of Rozansky–Willis invariants
- hom pairing categorifies the natural hermitian pairings on
 - TV(Σ^2)
 - $CY(\Sigma^2 \times I)$
 - $\mathsf{RT}(\Sigma^2 \cup_{\partial \Sigma} \overline{\Sigma^2})$
- Cooper–Krushkal categorified spin networks form generating objects for completion, orthogonal for symmetrized hom.

Summary

- RT as boundary of CY and square root of TV, guide categ'f'n.
- Lower dimensional layers accessible via (derived) skein theory.
- Start seeing two candidate categorified CY and categorified TV each:

	linear	loc. linear	loc. stable
$\mathbb{E}_k \backslash n - k$	1-categories	2-categories	$(\infty,2)$ -categories
monoidal	TV	Asaeda–Frohman–Kaiser	[HRW24]
braided	CY	[MWW19]	[LMGRSW24]

- First generation: linear skein theories
 - computability, ready for applications
 - sensitivity
- Second generation: derived skein theories
 - expect better decategorification behavior
 - technically challenging, needs expertise from many directions